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By a discrete-layer model, we investigate theoretically the alignment of a nematic liquid crystal close to a
flat amorphous substrate. We show that the presence of van der Waals interactions induces a strong distortion
localized in a few molecular lengths. We compare these predictions with that of a continuum model recently
developed by some of us. In the continuum model, we derive approximate analytical expressions for the
distortion profile, showing that, asymptotically, the distortion decays as the inverse of the distance from the
substrate. The amplitude of the distortion according to the two models is different, but the main qualitative
features remain unchanged. We show that the main distorting mechanism can be attributed to an effective
surface field. The existence of a subsurface distortion is compatible with some recent measurements of the
alignment of the first molecular layer, performed with optical second-harmonic generation techniques.@S1063-
651X~96!01305-8#

PACS number~s!: 61.30.2v, 61.30.Cz, 68.10.Cr

I. INTRODUCTION

Long-range bulk distortions in nematic liquid crystals
~NLC’s! are well described by the continuum theory pro-
posed long ago by Frank@1#. According to this theory the
bulk elastic energy densityF of a distorted NLC is a qua-
dratic form of the deformation tensorni , j5]ni /]xj , where
n is the NLC director. This means that

F5F01Ki j ni , j1
1

2
Ki jkl ni , jnk,l , ~1.1!

where F05F(ni , j50) is the energy density of the unde-
formed state andKi j andKi jkl are the elements of the elastic
tensors. The elastic tensors can be decomposed in terms of
the elements of symmetry of the NLC phase and of the unit
tensor d i j . In the bulk Ki j50, F0 is constant and
f5F2F0 may be written in the form

f5
1

2
@k11~¹•n!21k22~n•¹3n!21k33~n3¹3n!2#

2~k221k24!¹•~n¹•n1n3¹3n!. ~1.2!

In this framework the equilibrium director field, in the ab-
sence of external fields, is found by minimizing the total
energy of the NLC sample defined by

G5E E E
t
f dt1E E

S
f SdS, ~1.3!

wheret is the volume of the sample andS its surface. The
surface energy densityf S takes origin from the direct NLC-
substrate interaction and from the NLC-NLC interaction and

is generally assumed to be of the kindf S5 f S(ni), i.e., only
depending on the surface director.

In this approximation the elastic constants entering in Eq.
~1.2! are supposed position independent up to the bounding
surface. A variation of these constants is expected in a
boundary layer having a thickness of the order of the range
of the intermolecular forces. Such position dependences of
the elastic constants are taken into account inf S , which
gives the surplus of the elastic energy density localized near
the boundary surface and characterizing the NLC-substrate
interactions.

To connect the elastic constants with the intermolecular
interaction energyg responsible for the NLC phase, it is
necessary to use a molecular model. In the mean field ap-
proximation we obtain@2#

F5F01Ki j ni , j1Ki jkni , jk1
1

2
Ki jkl ni , jnk,l , ~1.4!

whereF0 , Ki j , Ki jk , andKi jkl depend on the form of the
intermolecular interaction energy. In the bulkKi j50 and
Ki jkni , jk can be written as the sum of a ‘‘surfacelike’’ term
k13¹•(n¹•n) and of terms that simply renormalize the Frank
bulk elastic constantsk11, k22, and k33. The bulk
k13-dependent term can be integrated, giving a surface con-
tribution to the elastic energy that depends on the surface
gradient ofn.

Long ago it had been shown that the variational problem
that defines the director field is not a standard problem when
the k13 term is present@3#. In fact, the presence of a surface
term depending on the normal derivative ofn introduces a
surface ‘‘discontinuity’’ ofn, which has been interpreted as
a strong distortion of the director field within the boundary
layer @3#. Recently, it has been shown that near the boundary
the quantitiesKi j are different from zero and renormalize the
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k13 term, introducing an effective splay-bend elastic constant
@4#. More precisely, it has been shown that nonzero energy
terms depending onk13 andKi j are related to the presence of
distorting intermolecular interactions@2# and that the distort-
ing effects of such terms partially compensate each other@4#.

A well posed variational problem giving a well defined
subsurface distortion is obtained by taking into account also
terms proportional to the square of the second-order deriva-
tives ofn, connected to a new elastic constantk* in the limit
of small deformations@5#. In the framework of this extended
elastic theory, the usual elastic constants are assumed to be
position independent and their position dependence near the
boundaries is at least partially taken into account by the new
terms. As in all the extended elastic theories, it appears an
intrinsic mesoscopic length, defined byb5Ak*/ k, over
which deviations from the standard predictions take place.
Herek is an average bulk Frank elastic constant, of the order
of k11,k22,k33. The lengthb is of the order of the interaction
range of the intermolecular forces responsible for the NLC
phase@6#. Following this approach, an elastic model@7# has
been proposed to interpret the temperature surface transitions
in NLC in terms of the different temperature dependences of
k13 andk @8,9#.

Since the surface distortion of the average molecular ori-
entation takes place over the mesoscopic lengthb, an elastic
description in the surface layer can be questioned. Hence the
extended elastic theory has to be considered as a rough ap-
proximation of the true description.

The existence of a possible strong subsurface distortion
has been criticized by some authors. In particular Pergamen-
shick and co-workers@10–12# and Hinov @13–15# suggest
that the subsurface discontinuity is an artifact of the theory.
They also suggest a method to solve the variational problem
without the introduction of new terms, which gives smooth
profiles up to the surface@10–15#. However, several authors
have pointed out the inconsistencies of this theory@16–20#:
for example, the conservation of the angular momentum does
not seem to be satisfied@17#.

Other models have been proposed to describe the elastic
properties of the surface layer, by introducing position-
dependent surface elastic constants, obtained by taking into
account of the reduced symmetry of the NLC close to the
surface@21–23#. These approaches have the drawback that
the number of surface elastic constants is relatively large and
their position dependences give rise to cumbersome Euler-
Lagrange equations.

In this paper we propose a molecular approach to analyze
the possibility of a subsurface distortion. The director profile
is obtained by minimizing the total molecular interaction en-
ergy. We consider a two-body interaction energyg given by
a superposition of a short-range Maier-Saupe-like interaction
@24# and of the long-range-induced dipole-induced dipole
Nehring-Saupe contribution@25#. The Maier-Saupe-like term
stabilizes a uniform orientation and can be approximated by
an effective elastic constant. This amounts to assuming that
the stabilizing terms are mainly due to steric contact interac-
tions. The Nehring-Saupe term, as we will show, is respon-
sible for the subsurface deformation. These potentials are
known to be not too realistic: for instance, they lead to val-
ues of elastic constants that are not very close to the experi-
mental data@9#. However, they are good model potentials, as

they greatly simplify the calculations, retaining the essential
kind of functional dependence of more realistic, but much
more complex, interaction laws, as the Gay-Berne potential
@26#. In Sec. II we consider a discrete-layer model, in which
a smecticlike order is supposed. In Sec. III we compare this
model with a continuum approach, recently developed by
some of us, in which the molecular density is supposed to be
uniform @27#. Even though the amplitude of the subsurface
distortion is found to be much smaller in the discrete-layer
model, its qualitative characteristics remain almost un-
changed. In the limit of surface distortions with a small am-
plitude, by a suitable approximation, we derive an analytical
expression for the distortion profile in the continuum model.
This approximation shows that the main contribution to the
surface distortion comes from an anisotropic energy density
confined close to the surface. This anisotropic energy de-
pends only on the profile and not on its derivatives. The
amplitude of the subsurface deformation versus the surface
tilt angle shows a behavior similar to that obtained in the
framework of the extended elastic theory proposed in@5#. In
Sec. IV the limits of the model and its possible extensions
are discussed. In Sec. V we draw the main conclusions of our
models.

II. DISCRETE MODEL

Let us consider a NLC slab having a finite size in thez
direction. We consider only planar distortions, with the nem-
atic director n in the (y,z) plane forming the tilt angle
w5w(z) with the z axis. The scalar order parameter is as-
sumed to be equal to one; the major molecular axis coincides
with the NLC director. We make a discrete model alongz by
supposing that the NLC consists of equally spaced planes
orthogonal to thez direction, with a constant surface density
in each plane. This last approximation amounts to supposing
a smecticlike ordering: it might be most appropriate to de-
scribe Langmuir-Blodgett multilayers.

Our approximations are rather crude; in particular, in a
more realistic situation, contributions to the free-energy
coming from gradients of the scalar order parameter and of
the molecular density should appear. In Sec. IV we will dis-
cuss in more detail these approximations and we will outline
some possible extensions of this model.

According to our hypotheses, the molecular density per
unit volume is

r~r!5r (
n50

N

d~z2n!, ~2.1!

whereN11 is the number of planes,r is a constant molecu-
lar density, andz5z/r 0 is a normalized coordinate along the
surface normal. Herer 0 is the thickness of each smectic
plane; therefore it is of the order of the molecular dimen-
sions.

Let the interaction energy between two molecules atR
andR8 contains a Nehring-Saupe-induced dipole-induced di-
pole contribution@25#

gNS~R,R8!52
C

r 6
@n•n823~n•u!~n8•u!#2, ~2.2!
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wheren5n(R), n85n(R85R1r), u5r/r , andC is a posi-
tive constant. Thanks to Eq.~2.1!, the corresponding energy
per unit surface can be written as

F NS5
1

2E gNS~r,r8!r~r!r~r8!dr8dz

5F 0 (
m,n50

N

f ~wm ,wn ,m,n!, ~2.3!

with F 05pCr2/(64r 0
2) and wm5w(z5m). The function

f (wm ,wn ,m,n) for mÞn can be readily evaluated by sub-
stituting the interaction energy~2.2! in ~2.3!. One thus ob-
tains, up to a term independent of the angle,

f ~wm ,wn ,m,n!523
~cos2wm1cos2wn13cos2wmcos

2wn!

~m2n!4
.

~2.4!

Form5n the interaction energy~2.2! would give a diver-
gent contribution; a suitable cutoff should be introduced. Al-
ternatively, one can observe that, for any nematic interaction,
the interaction energy of each molecule must be independent
of the director orientation in a unlimited homogeneously
aligned sample. This means that

(
n52`

`

f ~wm ,wm ,m,n!5const. ~2.5!

By exploiting this general property and setting the arbitrary
constant value of the energy to zero, we arrive at

f ~wm ,wm ,m,m!52 (
n52`
nÞm

`

f ~wm ,wm ,m,n!

52
p4

15
~2cos2wm13cos4wm!. ~2.6!

We suppose that all the other molecular interactions favor
a uniform nematic order such as, e.g., the Maier-Saupe inter-
action@24#, and that they can essentially be accounted for by
a usual elastic contribution@27#. Its discrete implementation
can be written as

F el5F 0k (
m50

N21

~wm112wm!2, ~2.7!

k being a normalized elastic constant.
To determine the director profile, we minimize the sum of

the two energies~2.3! and ~2.7! by considering the angles
wm of each layer as minimization parameters. A strong sym-
metric anchoring is imposed:w(0)5w(N)5ws . In this situ-
ation the profile is symmetric with respect to the center of the
sample: wm5wN2m . Good results are obtained for
ws&75°, whereas forws.75° the convergence is slower
due to the low sensitivity of the energy on the profile. Figure
1 shows the director profile obtained for 42 layers, for dif-
ferent surface anglesws in the absence of the elastic contri-
bution (k50). As one immediately notes, the Nehring-
Saupe interaction induces a distortion of the director profile
confined in a few layers close to the surface, tending to align

the director parallel to the surface. The largest distortion is
among the first two layers. The first half of the director pro-
file can be fitted very well with the function

w~z!5wb2~wb2ws!
l

z1l
, ~2.8!

wherewb is the saturation bulk angle andl plays the role of
a normalized penetration length. The fit is shown by the solid
lines in Fig. 1. The functional dependence~2.8! is always a
very good approximation of the true profile forws,75° and
allows a faster determination of the director profile by mini-
mizing the total energy only with respect to the two param-
eterswb andl. Fork50 the maximum subsurface distortion
Dw5wb2ws , as a function of the surface anglews , is
reached for the homeotropic anchoringws50.

The introduction of the elastic term decreases the ampli-
tude of the distortion and shifts the maximum subsurface
distortionDw, as a function of the surface anglews , from
ws50 to ws'35°. This is shown in Fig. 2. In Fig. 3 we

FIG. 1. Discrete director profilewm ~circles! and fit ~solid line!
according to Eq.~2.8!, for different surface angles, in a symmetric
sample with 42 layers. The normalized elastic constantk is zero.
Only half of the profiles are shown.

FIG. 2. Distortion angleDw5wb2ws as a function of the sur-
face anchoring anglews for different values of the normalized elas-
tic constantk.
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report the values of the normalized penetration lengthl cor-
responding to the curves shown in Fig. 2. As the elastic
contribution increases,l correspondingly increases: as ex-
pected, the distortion tends to be less abrupt. We note that for
k50, wb reaches 90° forws>78°: this explains the linear
behavior ofDw in this region~see Fig. 2!. The corresponding
values ofl cannot be properly determined, as the profile
cannot be well approximated with the expression~2.8!. Con-
sidering the bulk anglewb as an order parameter and the
normalized elastic constantk as a control parameter, for
ws50 we find a second-order transition atk5kc>3.41 as
shown in Fig. 4: fork.kc the uniform homeotropic align-
ment is stable.

III. CONTINUUM MODEL

In Ref. @27#, a continuum model of the molecular orien-
tation close to an interface has been developed and numeri-
cally analyzed by using a trial function: a subsurface defor-
mation arising from van der Waals interactions has been
clearly demonstrated. In this section we want to compare the
results obtained in Ref.@27# with those previously discussed.

This comparison is particularly interesting since the con-
tinuum and the discrete-layer model somewhat represent two
extreme idealized situations: the first model assumes that
close to the surface the nematic order is unchanged, while
the latter supposes that a smecticlike ordering is induced.

In the numerical approach used in Ref.@27# an exponen-
tial trial function for the director profile had been assumed
for the sake of simplicity. Here, in the limit of small distor-
tions, we derive approximated analytical expressions for the
distortion profile that shed some light on the origin of the
distorting mechanism.

From now on we will consider a semi-infinite NLC
sample since, as it has been shown in Sec. II, the NLC ori-
entation changes only over a few molecular layers near the
surfaces. Let us focus our attention on the case of surface
distortions with a small amplitudeDw!1, corresponding to
a small van der Waals contribution. In the continuum model
the energy per unit surface is given by@27#

F 5F 0F ~12n!E
0

1`

dzE
2z

1`

f ~z,z8!dz8

1nE
0

1`

w82~z!dzG , ~3.1!

where, as in Sec. II,F 05pr2C/(64 r 0
2), z5z/r 0 is the nor-

malized distance of one molecule from the surface,
z85z8/r 0 is the normalized distance between two molecules
along thez axis, and@22#

f ~z,z8!523@cos2w~z!1cos2w~z1z8!

13cos2w~z!cos2w~z1z8!#z824 for uz8u.1,

f ~z,z8!5~63 z84288 z82122!@cos2w~z!1cos2w~z1z8!#

1~2171z841200z82238!cos2w~z!

3cos2w~z1z8!1~36 z84240 z8214!sin@2w~z!#

3sin@2w~z1z8!# for uz8u,1. ~3.2!

The first term in Eq.~3.1!, proportional to (12n), comes
from the Nehring-Saupe interaction, the second one, propor-
tional ton, from the Maier-Saupe interaction. The parameter
n is related to the normalized elastic constantk introduced in
Sec. II asn5k/(11k).

The Nehring-Saupe contribution is difficult to treat owing
to its highly nonlocal character. The energy of a given dis-
torted profile depends on the values ofw at pairs of distant
points z and z1z8: a power series expansion inz8, which
would eliminate this nonlocal character by introducing the
derivatives of the profile at a generic pointz, is not possible
because it does not converge. This is related to the long-
range character of van der Waals interactions. However, if
the distortionDw is small, we may hope that a good approxi-
mation can be obtained by settingw(z1z8)5w(z) in Eq.
~3.2!. This amounts to neglecting the rotation of the mol-
ecules in a few interaction radiir 0 . Within this approxima-
tion, Eq. ~3.1! becomes

FIG. 3. Normalized penetration lengthl corresponding to the
distortion angles shown in Fig. 2.

FIG. 4. Distortion angleDw as a function of the normalized
elastic constantk for the anchoring anglews50 ~homeotropic an-
choring!. A second-order transition takes places atk5kc>3.41.
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F 5F 0H E
0

1

@~12n!~54z52112z3160z!cos2w~z!

1~263z51120z3254z!cos4w~z!1nw82~z!#dz

1E
1

1`F ~12n!
cos2w~z!@213cos2w~z!#

z3

1nw82~z!GdzJ . ~3.3!

Now the functional~3.3! has a standard form and its mini-
mum is given by the solution of the associated Euler-
Lagrange equation. Following the starting hypothesis that the
distortion is small and in the strong anchoring situation
w(0)5ws , we setw(z)5ws1e(z), where ue(z)u!1, and
we linearize the Euler-Lagrange equation with respect to the
distortione(z). At lowest order, for 0,12n!1, we get

e9~z!5~12n!@227z5156z3230z

1~63z52120z3154z!cos2ws#sin~2ws!

for z,1, ~3.4a!

e9~z!52~12n!~113cos2ws!sin~2ws!z
23 for z.1.

~3.4b!

Equations~3.4! have to be solved with the boundary condi-
tions e(0)50 and e8(1`)50 and with the continuity of
e(1) ande8(1). This gives the profile

e~z!5~12n!F2
9

14
z71

14

5
z525z316z

1S 32 z726z519z326z D cos2wsGsin~2ws!

for z,1, ~3.5a!

e~z!5~12n!F12835 2
1

2z
~113cos2ws!Gsin~2ws!

for z.1. ~3.5b!

The asymptotic shape of the profile given by this approxima-
tion is in agreement with the profiles numerically found in
the discrete-layer approximation. The corresponding subsur-
face deformationDw5w(1`)2ws5e(1`) is

Dw5
128

35
~12n!sin~2ws!. ~3.6!

As shown in Fig. 5, forn>1 the approximate expression
~3.6! reproduces quite well the numerical results obtained
with an exponential trial function@27#. In the same figure we
show also the subsurface deformation numerically computed
according to the previously described discrete-layer model,
for the same parameters. It is immediately apparent that the
subsurface distortion obtained with the continuum model is
nearly twice as large as that predicted by the discrete-layer
model. This is not surprising, as in the discrete-layer model

the molecules are more ‘‘rigid,’’ due to the smecticlike or-
dering. However, the distortion is similar in both models and
reminds the behavior predicted by the extended elastic
theory of Refs.@5,7#. The approximationw(z1z8)5w(z)
that we used to derive the profile~3.6! can also be employed
in the discrete-layer model. Again, good results are obtained
in the limit of surface distortions with small amplitude. In
this case, however, no analytical solutions can be derived.

This analysis has shown that the main contribution to the
subsurface deformation comes from the ‘‘homogeneous’’
~i.e., independent ofni , j ) part of the energy density. This
anisotropic contribution is similar to the van der Waals in-
teraction with a crystalline substrate considered in@28#. The
approximated analytical expressions, obtained by consider-
ing only this anisotropic homogeneous contribution, show
that the distortion asymptotically decays as 1/z. We can de-
fine a typical distortion lengthd as an average of the distance
of the distortion profile weighed by the amplitude of the
distortion

d5
1

DwE0
Dw

zdw5
1

DwE0
1`

z
dw

dz
dz. ~3.7!

d is connected to the optical path difference between the
ordinary and the extraordinary ray propagating in the aniso-
tropic medium. For the profile in Eq.~3.6! the distortion
length d is logarithmically divergent. However, since it is
known that van der Waals interactions decay faster for dis-
tances greater thandc;1000 Å, due to retardation effects
@28#, we expect that d should be of the order of
r 0ln(dc /r0);100 Å. This distortion length, therefore, hardly
seems accessible by means of optical phase shift measure-
ments.

IV. EXTENSION OF THE MODEL

In the previous sections we have analyzed in detail the
existence of a subsurface distortion by considering the effec-

FIG. 5. Subsurface deformationDw as a function of the anchor-
ing tilt anglews in the continuum model forn50.99. The solid line
is the numerical value obtained with an exponential trial function.
The dotted line is the approximation given by Eq.~3.6!. The dashed
line is the numerical prediction according to the discrete-layer
model for the normalized elastic constantk599, corresponding to
the value ofn50.99.
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tive g as due to a superposition of short-range Maier-Saupe
and long-range Nehring-Saupe interactions. As discussed
elsewhere, the subsurface distortion originates from the func-
tional dependence ofg on the relative orientation ofn with
respect tor. For an arbitrary interaction lawg, the total
energy per unit surface of the NLC semi-infinite slab is still
given by Eq. ~3.1!, where f (z,z8)5 f @w(z),w(z1z8);z8#
depends on the interaction law. As before,f (z,z8) takes into
account the contribution to the interaction energy between
the NLC molecules, which depends also onn•u andn8•u.
On the contrary, the elastic term proportional tow82 takes
origin from the n•n8 dependence of the NLC interaction
energy, which favorsnin8 everywhere. Again in the hypoth-
esis of small distortions overr 0 , it is possible to assume
w(z)5w(z1z8). In this manner, from Eq.~3.1! and in the
limit of small distortions, one obtains

F 5F 0E
0

1`

@nw821~12n!h~w,z!#dz, ~4.1!

where

h~w,z!5E
2z

1`

f @w~z!,w~z!;z8#dz8. ~4.2!

The tilt angle profilew(z) is a solution of the differential
equation

w92
12n

2n

dh~w,z!

dw
50, ~4.3!

satisfying the boundary conditionw(0)5ws , connected to
the strong anchoring hypothesis. Operating as in Sec. III, we
find thate(z)5w(z)2ws is given by

e92
12n

2n Fdh~w,z!

dw G
w5ws

50, ~4.4!

satisfying the boundary conditions e(0)50 and
e8(z→`)50. It is possible to obtain an order of magnitude
of Dw5e(`) by supposing thatw8 is different from zero
only in a surface layer of mesoscopic thicknessr 0l . In a first
approximationw(z)5ws1(Dw/ l )z. In the limit 12n!1,
uDwu!1 and is expected to be proportional to 12n. By
supposingw85Dw/ l for 0<z< l , Eq. ~4.1! gives

F 5F 0E
0

l H nS Dw

l D 21~12n!Fh~ws ,z!

1S dhdw D
ws

Dw

l
zG J dz. ~4.5!

The value ofDw minimizing F is

Dw52
12n

2n E
0

l

zS dhdw D
ws

dz. ~4.6!

Equation ~4.6! generalizes the result obtained in Sec. III,
according to which the anisotropic part of the energy density
introduces a subsurface deformation localized over a mesos-
copic lengthr 0l .

Up to now in our discussion we have supposed a perfect
nematic order, corresponding to a scalar order parameter
S51. To generalize our model in order to take into account
the temperature, it is necessary to solve a difficult problem of
statistical mechanics. However, at least from a phenomeno-
logical point of view, it is possible to draw a few conse-
quences from the above reported discussion. To this purpose,
let us recall that the Frank elastic constants are expected to
be proportional toS2 @8,9#. Hence, in Eq.~4.5! the elastic
termn(Dw/ l )2 has to be replaced bynS2(Dw/ l )2. For what
concerns the temperature dependence ofh, let us suppose a
flat and isotropic substrate with a normal unit vectork par-
allel to the z axis. In general, in the uniform orientation
approximationn5n8, one obtains the functionh(n,z) ap-
pearing in Eq.~4.1! by integratingg(n,n8;r) in the half
spacez8>2z. To take into account the temperature, instead
of usingn to characterize the NLC phase, it is necessary to
use the tensor order parameterQ of elements
Qi j5S(ninj21/3d i j ). By expandingh(Q,z) in a power se-
ries of the tensor order parameter one obtains, at second
order inS,

h~Q,z!5h1~z!kiQi j kj1h2~z!~kiQi j kj !
21h3~z!kiQi jQjl kl

1h4~z!Qi jQji , ~4.7!

where

lim
z→`

hi~z!50 for i51,2,3,

sinceF0 in the bulk has to ben independent. From Eq.~4.7!
simple calculations give

h~w,z!5m0~z!1m2~z!cos2w1m4~z!cos4w, ~4.8!

where

m0~z!52
h1~z!

3
S1

h2~z!1h3~z!16h4~z!

9
S2,

m2~z!5h1~z!S1
h3~z!22h2~z!

3
S2, ~4.9!

m4~z!5h2~z!S2.

For SÞ1 Eq. ~4.6! becomes then

Dw52
12n

2n
sin~2ws!

A211~A2212A42cos
2ws!S

S
,

~4.10!

where

A215E
0

l

zh1~z!dz,A225E
0

l

z
h3~z!22h2~z!

3
dz,

A425E
0

l

zh2~z!dz.
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Equation~4.10! shows that even in the case of strong anchor-
ing, in which ws is fixed by the surface treatment,Dw is
temperature dependent. Hence the above described model
could explain the temperature surface transitions in NLC’s.
This model is, in some respects, similar to the elastic model
presented a few years ago@7#. In that case, instead of Eq.
~4.10! one hasDw5(k13/2k)sin(2ws), wherek135aS1bS2

andk5k0S
2 @8,9#. Note thatk13 andF0 are both connected

to the dependence ofg on n•u. Hence the temperature sur-
face transition gives information about this functional depen-
dence.

V. CONCLUSION

In this paper we have shown that, in general, close to an
amorphous surface a nematic liquid crystal undergoes a dis-
tortion localized over a few molecular lengths. This distor-
tion is connected to the dependence of the molecular inter-
action energy from the orientation of the molecules with
respect to their relative position. This dependence gives rise
to a homogeneous anisotropic energy density confined in a
surface layer of the order of the molecular length. It is also
responsible for elastic terms associated with surface contri-
butions depending on the nematic director gradients. These
terms are the source of the subsurface deformation. The
usual elastic approach poses several self-consistency prob-
lems: from a mathematical viewpoint the variational problem
is ill posed@3#; from a physical point of view, the use of an
elastic theory over microscopic lengths is somehow ques-
tionable. To overcome all these difficulties, in this paper we
have tackled the analysis by means of a molecular model.
We have supposed a perfect nematic order and a flat amor-
phous substrate inducing a strong anchoring. By using a hy-
brid discrete model, in which the molecules have a smectic-
like order in planes parallel to the bounding surfaces, we
have numerically determined the tilt angle profile inside a
finite sample. Our results show that, for any tilted anchoring,
a subsurface distortion exists. The largest distortion is local-
ized over the first molecular layers, but it has an asymptotic
long tail decaying as the inverse of the distance from the
surface. This tail is responsible for a logarithmic divergence
of the distortion length. Retardation effects should actually
bound the distortion length to a value of the order of 100 Å,
which is hardly accessible by means of optical measure-
ments. The amplitude of the distortion depends on the an-
choring tilt angle: it is always zero for a planar anchoring,
while for the homeotropic one it can be zero or not according
to the relative weight of the destabilizing contribution with
respect to the stabilizing one. The same kind of analysis has
been performed using a continuum model, in which the mol-

ecules are supposed to be uniformly distributed in a liquid-
like manner. In this framework, we have obtained an analyti-
cal expression for the tilt angle profile in the limit of surface
distortions with small amplitude. The comparison with the
numerical results indicates that the main distorting mecha-
nism is the uniform anisotropic part of the free energy den-
sity. One could therefore attribute the distortion to an effec-
tive surface field actually induced by the reduced symmetry
close to the boundary. From this point of view, the situation
resembles the distortion induced by a crystalline substrate on
a nematic presenting no intrinsic distortion mechanisms, as
analyzed in@28#. Hence one can conclude that a phenomeno-
logical elastic theory for planar distortions could be formu-
lated in terms only of the usual Frank elastic constants@1# by
introducing an effective surface energy including the intrin-
sic destabilizing contribution.

The continuum model gives a distortion amplitude higher
than the discrete-layer model. However, the qualitative con-
clusions remain the same. This shows that the details of the
surface ordering, i.e., the possible existence of a smectic or-
dering close to the surface@26#, although changing the quan-
titative results, do not suppress the subsurface distortion.

Furthermore, we have generalized the continuum model
to include different kinds of interaction energies and to take
into account a nematic scalar order parameter lower than
one. Simple expressions able to describe temperature-
induced surface transitions@29,30# have been obtained.

A direct determination of the behavior of the molecular
orientation close to a surface is still lacking. Partial experi-
mental indications of the possibility of a subsurface defor-
mation have been recently reported@31,32#: by means of an
optical second-harmonic technique it has been shown that
the orientation of the first molecular surface layer differs
from the bulk molecular orientation of a macroscopically
homogeneous sample. In@32# the difference between the sur-
face and the bulk tilt angles has been attributed to the biaxial
distribution of the molecules close to the surface, giving a
distortion confined in a surface layer whose thickness is of
the order of the nematic-isotropic coherence lengthj. Here
we have shown that even if the surface orientation is not
incompatible with the bulk uniaxial ordering, a surface de-
formation is still to be expected, on a thickness comparable
with j. Also its value is of the same order of magnitude as
the experimentally observed data@32#.
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